679 research outputs found

    Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    Get PDF
    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified

    Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments

    Get PDF
    Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure extensive air showers (EAS). The precise knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the reconstruction of UHECR. The MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment has been designed to perform such FLY measurements. In this paper we will present the results of FLY in the 290-440 nm wavelength range for dry air and pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50 GeV. The experiment uses a 90Sr radioactive source for low energy measurement and a CERN SPS electron beam for high energy. We find that the FLY is proportional to the deposited energy (E_d) in the gas and we show that the air fluorescence properties remain constant independently of the electron energy. At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio FLY/E_d=17.6 photon/MeV with a systematic error of 13.2%.Comment: 19 pages, 8 figures. Accepted for publication in Astroparticle Physic

    Integrable atomtronic interferometry

    Full text link
    High sensitivity quantum interferometry requires more than just access to entangled states. It is achieved through deep understanding of quantum correlations in a system. Integrable models offer the framework to develop this understanding. We communicate the design of interferometric protocols for an integrable model that describes the interaction of bosons in a four-site configuration. Analytic formulae for the quantum dynamics of certain observables are computed. These expose the system's functionality as both an interferometric identifier, and producer, of NOON states. Being equivalent to a controlled-phase gate acting on two hybrid qudits, this system also highlights an equivalence between Heisenberg-limited interferometry and quantum information. These results are expected to open new avenues for integrability-enhanced atomtronic technologies.Comment: 6 pages, 4 figures, 1 tabl

    Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth

    Get PDF
    Polar (directional) cell growth, a key cellular mechanism shared among a wide range of species, relies on targeted insertion of new material at specific locations of the plasma membrane. How these cell polarity sites are stably maintained during massive membrane insertion has remained elusive. Conventional live-cell optical microscopy fails to visualize polarity site formation in the crowded cell membrane environment because of its limited resolution. We have used advanced live-cell imaging techniques to directly observe the localization, assembly, and disassembly processes of cell polarity sites with high spatiotemporal resolution in a rapidly growing filamentous fungus, Aspergillus nidulans. We show that the membrane-associated polarity site marker TeaR is transported on microtubules along with secretory vesicles and forms a protein cluster at that point of the apical membrane where the plus end of the microtubule touches. There, a small patch of membrane is added through exocytosis, and the TeaR cluster gets quickly dispersed over the membrane. There is an incessant disassembly and reassembly of polarity sites at the growth zone, and each new polarity site locus is slightly offset from preceding ones. On the basis of our imaging results and computational modeling, we propose a transient polarity model that explains how cell polarity is stably maintained during highly active directional growth

    Wolf-Rayet and LBV Nebulae as the Result of Variable and Non-Spherical Stellar Winds

    Full text link
    The physical basis for interpreting observations of nebular morphology around massive stars in terms of the evolution of the central stars is reviewed, and examples are discussed, including NGC 6888, OMC-1, and eta Carinae.Comment: To be published in the Proceedings of IAU Colloquium 169 on Variable and Non-Spherical Stellar Winds in Luminous Hot Stars, ed. B. Wolf (Springer-Verlag, Berlin, Heidelberg). 7 pages, including 5 figures. A full-resolution version of fig 4 is available in the version at http://www.mpia-hd.mpg.de/theory/preprints.html#maclo

    The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: IV. Cosmological Implications

    Full text link
    In this paper we examine the cosmological constraints of the recent DIRBE and FIRAS detection of the extragalactic background light between 125-5000 microns on the metal and star formation histories of the universe.Comment: 38 pages and 9 figures. Accepted for publications in The Astrophysical Journa

    Combined transcriptomic-(1)H NMR metabonomic study reveals yhat monoethylhexyl phthalate stimulates adipogenesis and glyceroneogenesis in human adipocytes

    Get PDF
    Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-(1)H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP

    Free induction signal from biexcitons and bound excitons

    Full text link
    A theory of the free induction signal from biexcitons and bound excitons is presented. The simultaneous existence of the exciton continuum and a bound state is shown to result in a new type of time dependence of the free induction. The optically detected signal increases in time and oscillates with increasing amplitude until damped by radiative or dephasing processes. Radiative decay is anomalously fast and can result in strong picosecond pulses. The expanding area of a coherent exciton polarization (inflating antenna), produced by the exciting pulse, is the underlying physical mechanism. The developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1

    On the Dynamical Overstability of Radiative Blast Waves: The Atomic Physics of Shock Stability

    Full text link
    Atomic physics calculations of radiative cooling are used to calculate criteria for the overstability of radiating shocks. Our calculations explain the measurement of shock overstability by Grun et al. and explain why the overstability was not observed in other experiments. The methodology described here can be especially useful in astrophysical situations where the relevant properties leading to an overstability can be measured spectroscopically, but the effective adiabatic index is harder to determine.Comment: 11 pages including 3 figures, accepted for publication in Physical Review Letter

    Experimental Limit to Interstellar 244Pu Abundance

    Get PDF
    Short-lived nuclides, now extinct in the solar system, are expected to be present in the interstellar medium (ISM). Grains of ISM origin were recently discovered in the inner solar system and at Earth orbit and may accrete onto Earth after ablation in the atmosphere. A favorable matrix for detection of such extraterrestrial material is presented by deep open-sea sediments with very low sedimentation rates (0.8-3 mm/kyr). We report here on the measurement of Pu isotopic abundances in a 1-kg deep-sea dry sediment collected in 1992 in the North Pacific. Our measured value of (3+-3)x10^5 244Pu atoms in the Pu-separated fraction of the sample shows no excess over the expected stratospheric nuclear fallout content and under reasonable assumptions we derive a limit of 2x10^-11 g-244Pu/g-ISM for the abundance of 244Pu in ISM.Comment: 10 p, 1 fig, LateX(AASTeX) Accepted for publication in ApJL, aug 2, 200
    corecore